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ABSTRACT: High winds are one of the key forecast challenges across southeast Wyoming. The complex mountainous
terrain across the region frequently results in strong gap winds in localized areas, as well as more widespread bora and
chinook winds in the winter season (October–March). The predictors and general weather patterns that result in strong
winds across the region are well understood by local forecasters. However, no single predictor provides notable skill by it-
self in separating warning-level events from others. Random forest (RF) classifier models were developed to improve upon
high wind prediction using a training dataset constructed of archived observations and model parameters from the North
American Regional Reanalysis (NARR). Three locations were selected for initial RF model development, including the
city of Cheyenne, Wyoming, and two gap regions along Interstate 80 (Arlington) and Interstate 25 (Bordeaux). Verifica-
tion scores over two winters suggested the RF models were beneficial relative to current operational tools when predicting
warning-criteria high wind events. Three case studies of high wind events provide examples of the RF models’ effectiveness
to forecast operations over current forecast tools. The first case explores a classic, widespread high wind scenario, which
was well anticipated by local forecasters. A more marginal scenario is explored in the second case, which presented greater
forecast challenges relating to timing and intensity of the strongest winds. The final case study carefully uses Global
Forecast System (GFS) data as input into the RF models, further supporting real-time implementation into forecast
operations.
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1. Introduction

Locally enhanced winds due to complex topographic fea-
tures have been observed and studied across mountainous re-
gions around the world. Studies include foehn winds in the
European Alps (Drechsel and Mayr 2008; Sprenger et al.
2017), bora winds near the Adriatic Sea (Smith 1987; Alpers
et al. 2009), downslope and gap winds near the Strait of Juan
de Fuca (Colle and Mass 2000), and the “Hirodo-kaze” down-
slope wind near the base of Mount Nagi, Japan (Fudeyasu
et al. 2008). Most of these complex topographic features are
on the subgrid scale of global numerical weather prediction
(NWP); therefore, appropriate meteorological conditions are
often not resolved accurately. This is still true for mesoscale
NWP with fine-scale topographic features remaining unre-
solved, resulting in underforecast winds (Collins et al. 2020).
Multiple NWP postprocessing techniques have been devel-
oped to address these issues with the prediction of locally
enhanced winds (Lindsey et al. 2011; Sprenger et al. 2017).

Strong winds are one of the key forecast challenges across
southeast Wyoming during the winter months. This region
includes nearly 400 combined miles of Interstates 80 and 25,
which are among the busiest stretches of interstate in the
United States with regard to commercial truck traffic. The
complex mountainous terrain across the region frequently
results in strong gap winds in localized areas, as well as more
widespread bora and chinook (foehn) winds in the winter

season (October–March). The local high wind criteria include
sustained winds of 35 kt (18.01 m s21 or 40 mph) for one hour
and/or wind gusts in excess of 50 kt (25.72 m s21 or 58 mph).
These wind speeds are known to cause frequent blow overs of
light, high-profile vehicles, including campers and commercial
trailers. In some cases, property damage has occurred due to
wind gusts in excess of 65 kt (33.43 m s21 or 75 mph).

Figure 1 shows a topographical map of southern Wyoming,
which is a low point in the Rocky Mountain region at eleva-
tions around 1981–2286 m (6500–7500 ft). A narrower channel
exists between the Sierra Madre and Snowy Ranges, and the
Shirley/Ferris/Seminoe Mountains that industry has targeted
for wind turbine placement over the years (Martner and
Marwitz 1982). This channel continues through the lower ter-
rain of the Central Laramie Range before emptying out into
the high plains of southeast Wyoming and the North Platte
River Valley. On an even finer scale, localized narrow can-
yons and gaps, such as near Arlington and Bordeaux, can
further enhance winds and pose a threat to motorists along
adjacent roadways.

Gap winds form as statically stable air approaches a moun-
tain barrier and can only pass the obstacle through low-lying
areas in terrain. The strongest gap winds are typically ob-
served in the gap exit region as flow spreads out. This creates
an area of lower pressure in addition to background synoptic-
scale pressure gradients, increasing the pressure gradient force
through the gap (Overland and Walter 1981). Additionally,
downslope winds into gap channels can further enhance gap
wind flow in complex terrain. Mountain waves forming above
and downwind of mountain barriers can lead to strong winds
along the leeside slopes (Vosper 2004). These are frequent
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along the Rocky Mountain Front Range as high pressure builds
west of the Continental Divide, creating a strong west–east-
oriented mean sea level pressure (MSLP) gradient as noted in
previous studies such as Cotton et al. (1995). These strong
MSLP gradients can create favorable conditions for bora winds
on the leeside slopes of the Rocky Mountains. Bora winds are a
type of downslope wind that occur due to strong cold air advec-
tion over a mountain barrier, and are enhanced by the higher
density of the colder upstream air mass (Smith 1987; Alpers
et al. 2009). This is similar to a foehn (chinook) wind, but the re-
sulting adiabatic warming is offset by the presence of cold air
advection aloft (Defant 1951; Brinkmann 1974; Reed 1981).

a. Summary of current operational tools

The predictors and general weather patterns that result in
strong winds are well understood. Local forecasters use low-
level height gradients, winds aloft, omega (vertical motion)
fields, and low-level lapse rates to identify such threats. How-
ever, no single predictor provides notable skill by itself in sepa-
rating warning-level events from others. Local studies at the
Cheyenne National Weather Service (NWS) office have devel-
oped tools for high wind prediction dating back to the 1970s.
An early 2000s local study analyzed the correlation between
height gradients and wind gusts at Arlington (KARL). More
specifically, a height gradient from Craig, Colorado (CAG), to
Casper, Wyoming (CPR), was determined to be effective for
high wind prediction at Arlington, using a threshold of 50–60 m
at both the 700- and 850-mb levels (1 mb 5 1 hPa). Arlington
averages 38.6 days each winter with wind gusts exceeding high
wind criteria and 2.2 days with wind gusts exceeding 75 mph.

A 2015 local study developed logistic regression models
similar to Lindsey et al. (2011) to assign probabilities of
exceeding 58-mph wind gusts at Cheyenne (KCYS) and
Bordeaux (KBRX) (Hammer 2015; Finch and Lindsey 2016).
Bordeaux averages 30.5 days each winter with wind gusts
exceeding high wind criteria and 2.9 days with wind gusts ex-
ceeding 75 mph. High winds are less frequent at Cheyenne,
which averages 7.6 days each winter with wind gusts exceed-
ing high wind criteria. The Bordeaux logistic regression model
was trained using the 850-mb CAG–CPR height gradient (m),
ARL–BRXMSLP gradient (mb), and 800-mb wind speed (kt;
1 kt ’ 0.51 m s21). The Cheyenne logistic regression model
uses the MSLP gradient (mb) from Grand Junction, Colorado
(GJT), to CYS, 725-mb omega (2mb s21), surface (SFC)–650-mb
lapse rate (8C km21), and 650-mb wind speed (kt) and
direction (8). The models helped to improve forecast skill, but still
have shortcomings with differentiating wind events that approach
local high wind criteria and those actually exceeding the 58-mph
wind gust threshold. An optimal probability of 26%was originally
obtained for the Bordeaux logistic regression model, meaning this
threshold had the best skill when the model probability was used
as the sole trigger point for high wind prediction for cases in the
validation dataset. For Cheyenne, an optimal probability of 12%
was obtained. These logistic regression models were trained using
North American Regional Reanalysis (NARR) data and then im-
plemented into real-time operations using Global Forecast Sys-
tem (GFS) data.

b. Problem statement

Machine learning techniques for weather and hazard forecast-
ing have recently been a growing topic of interest (McGovern

FIG. 1. Topographical map of southernWyoming with select geographical features labeled in addition to the Arling-
ton and Bordeaux gap locations along Interstates 80 and 25, respectively, and the city of Cheyenne.
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et al. 2017). Random forest (RF) models have been developed
to create severe weather outlooks and excessive rainfall outlooks
similar to those products issued by the Storm Prediction Center
and Weather Prediction Center (Herman and Schumacher
2018a,b; Hill et al. 2020; Schumacher et al. 2021). Researchers at
the National Severe Storms Laboratory (NSSL) used machine
learning techniques to develop the New Tornado Detection
Algorithm and New Mesocyclone Detection Algorithm to assist
with warning operations and tested these tools as part of the
Hazardous Weather Testbed (Sandmael et al. 2020). Several
NWS forecast offices have been developing machine learning
tools for fog detection on webcams (Wilson and Cote 2020), pre-
dicting the development of radiation fog at Terminal Aero-
drome Forecast (TAF) sites (Carr et al. 2020), and predicting
mountain pass closures and potential car crashes (Dang 2020).
Winds have also become a recent candidate for machine learn-
ing applications because of NWP limitations on the finer scale.
This includes machine learning methods for postprocessing of
ensemble wind gusts (Schulz and Lerch 2022), and identification
of foehn winds in the Reuss Valley in Switzerland using an Ada-
Boost algorithm (Sprenger et al. 2017).

This study explores the use of machine learning techniques,
specifically RFs, to improve upon existing local tools for pre-
dicting nonconvective high winds and increase forecaster confi-
dence when issuing high wind warnings. The goal is to not only
improve forecast accuracy and lead time for high wind events,
but also to develop a tool that can enhance decision support
messaging for high wind events to core partners and the public.
Additionally, this study can serve as a proof of concept to be ap-
plied at other wind-prone areas where high-resolution forecast
models still severely underforecast strong winds.

2. Data and methods

a. Initial site selection

The initial exploration into RF modeling focuses on three pri-
mary locations in southeast Wyoming: Arlington, Bordeaux,
and Cheyenne. Each site is a unique wind microclimate, influ-
enced by different physical and dynamic processes. Gap winds
are common occurrences at both Arlington and Bordeaux,
while the city of Cheyenne primarily experiences downslope
windstorms, including both chinook and bora-type events. Bor-
deaux is in a unique position where it experiences both gap and
downslope winds. All three locations are prone to severe moun-
tain wave activity. These key differences will be important to
lay the foundation for predicting high winds in multiple climate
and terrain regimes. These three sites were also the focus of nu-
merous past local studies (Hammer 2015; Finch and Lindsey
2016), which led to a variety of forecasting tools still used exten-
sively in operations today. This existing guidance will be para-
mount in providing a critical baseline comparison to determine
the validity of the proposed techniques, and may help to raise
forecaster confidence in future tools.

b. Period of study

The selected period of study covers ten winters from 1 October
2010 to 31 March 2020. Figure 2 shows the frequency of high

wind occurrences for all three sites based on hour of the day and
month of the year, using the observational data described in
section 2c. Nonconvective high wind occurrences generally
peak between December and February for the three sites of
interest, which was also seen across southeast Wyoming in
Klink (1999). The warm-season months of April–September
were not considered in order to limit potential contamination
from convectively induced high wind events, which are ex-
tremely difficult to differentiate without an extensive analysis
of radar and satellite data.

c. Observational data and classification of winds

Wind observations for the Cheyenne Airport Automated
Surface Observing System (ASOS) were obtained using ar-
chived Meteorological Aerodrome Reports (METAR) from
the Iowa Environmental Mesonet (IEM). Peak wind gusts
were often found to be observed in between routine observa-
tions taken at 5-min or 1-h intervals. This was addressed
by parsing the maximum peak wind (PK WND) from all
METARs reported in a given time range. If no individual
METARs reported a PK WND, the peak wind gust was set to
the highest observed sustained wind speed for that period.
The Wyoming Department of Transportation owns and oper-
ates the observation sites at Arlington and Bordeaux. Wind
data for non-ASOS sites such as these were collected from
Utah MesoWest (Horel et al. 2002). These sites typically re-
port every 2–5 min, an acceptable time scale to consider indi-
vidual observations representative of local peak winds. Time
matching was necessary to accurately compare wind observa-
tions to the predictor data from the NARR. The observa-
tional data were split into 3-hourly time blocks by analyzing
data 690 min from the official NARR times. For instance,
NARR data for 1800 UTC would be matched to observations
occurring between 1630 and 1930 UTC. Calculations of maxi-
mum wind gust and maximum 1-h sustained winds were made
for each time block. Based on these calculations, each time
block was then assigned a wind classification defined in Table 1.
The high wind classification represents local high wind criteria.
While not a warning-level event, elevated winds are still signifi-
cant to forecast operations and provide a necessary step be-
tween the high wind and none classification. The wind speeds
and gusts defining the elevated classification more similarly rep-
resent the NWS wind advisory criteria. Additionally, including
an elevated classification helps to alleviate the class imbalance
observed in the dataset.

d. North American Regional Reanalysis data

Meteorological parameters at multiple pressure levels were
obtained from the NARR (Mesinger et al. 2006) for 3-hourly
intervals throughout the period of study to develop a large ini-
tial dataset. The data were extracted from the closest grid
point on the 32-km NARR grid to each location, including
sea level pressures, winds, heights, temperatures, and omega
at all available pressure levels. This information was then
used to derive new parameters such as height and sea level
pressure gradients between points, temperature lapse rates,
and vertical potential temperature gradients to expand upon
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the dataset of predictors to select from for each RF model.
Section 2e details methods used for specific predictor selec-
tion. The height and pressure gradients are of particular im-
portance, especially for gap flows as it implies the character of
the general weather pattern, including the position and
strength of areas of high and low pressure. Various gradients
were selected for investigation based on gap orientations, ter-
rain, and synoptic climatology. The 700-mb height gradient
between CAG and CPR is an example of a derived predictor
between points. Predictors derived from vertical profiles, such
as the surface–700-mb temperature lapse rate (8C km21),
were also important to imply the thermodynamic profile at a
given point and time in the absence of a sounding dataset.

Since the NARR is a reanalysis dataset, a separate system
was needed to deploy these models into real-time operations

for forecasters. Past studies for current operational tools used
GFS data for real-time operations with success (Hammer
2015; Finch and Lindsey 2016). Additionally, training on a re-
analysis dataset avoids the need to rebuild the dataset and
retrain the RF models each time a model system, such as the
GFS, completes an update. In real-time operations, GFS data
for selected predictors (section 2e) were extracted from the
closest grid point to each location on the 13-km grid.

e. Predictor background analysis and selection

The extracted and derived NARR predictors were com-
pared individually against the observed winds to determine
the predictability of warning-criteria wind gusts. Predictors
for each site’s RF model were selected based on a thorough
background analysis of correlations and critical success index
(CSI) scores of individual predictors at various thresholds.
Many meteorological parameters, such as CAG–CPR height
gradients, were already well known to be strong predictors of
significant winds from previous local studies, while others
were entirely experimental based on forecaster experience
and general understanding of high winds. CSI scores were
calculated [see Eq. (3) in section 2g] and analyzed for all
available predictors in the NARR dataset for each site. This
included various gradient orientations as well as data for

TABLE 1. Classifications assigned to observational data at
3-hourly intervals based on maximum wind gusts and maximum
1-h sustained winds.

Classification Wind gust 1-h sustained winds

High wind $58 mph and/or $40 mph
Elevated 45–57 mph and/or 35–39 mph
None ,45 mph and ,35 mph

FIG. 2. Heat map of frequency of high wind occurrences (wind gusts $ 58 mph and/or 1-h sustained winds $ 40 mph)
at (a) Arlington, (b) Bordeaux, and (c) Cheyenne based on hour (UTC) of the day (x axis) and month of the year (y axis).
Note the scale change in (c) with the maximum value at 15 compared to 50 for (a) and (b).
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multiple pressure levels and layers. The CSI scores were de-
termined under the assumption that an individual predictor
threshold is solely used for a “yes” or “no” decision on high
wind prediction. Figure 3 shows an example of this single pre-
dictor analysis for CAG–CPR height gradient thresholds (m)
for multiple pressure levels at Arlington. In this example, we
confirm that a 750-mb CAG–CPR gradient exceeding 55–60 m
is a strong predictor of high winds at Arlington, and therefore
was selected as a predictor for the RF model.

The best predictor candidates for the CSI score analysis
were correlated reasonably well (r2 greater than 0.5) to the
observed wind gust without accounting for any other predic-
tor variables. In some cases, CSI scores were not necessarily
the best method of determining the value of a predictor.
Those predictors with r2 values of 0.25 or less were generally
insufficient to independently predict maximum wind gusts,
but could still have value when considering the overall envi-
ronment. The temperature lapse rate is known to be an im-
portant predictor for high winds; as it indicates the degree of
low-level mixing as well as the presence of stable layers near
mountain tops (Vosper 2004). Temperature lapse rates are
not particularly useful as an independent predictor, however,
this does not mean they are not valuable or should not be in-
cluded in a model. Figure 4c for Cheyenne shows that high
winds rarely occur when a surface-based temperature inver-
sion is present (i.e., negative lapse rate), while cases increase
as lapse rates steepen toward dry adiabatic. Figure 4a for Ar-
lington shows a greater number of cases for lower lapse rates
between 08 and 68C km21, thus implying the importance of a
statically stable layer aloft. These tendencies strongly sup-
ported the inclusion of lapse rates in the RF models. Omega
also showed very little skill as an independent predictor, but

could still be a valuable consideration in an otherwise favor-
able high wind environment. The vast majority of high wind
cases in southeast Wyoming have been associated with sink-
ing motion, which promotes downward momentum transfer
of stronger winds from aloft. This suggests omega is an ex-
tremely important predictor for the RF models. Additional
standard meteorological parameters, such as 700-mb tempera-
tures and MSLP, were included despite their overall weak
correlation (r2 of 0.05 or less). These predictors generally did
not show any distinct tendencies when high winds occurred,
but were still considered important as they provide a com-
plete assessment of the atmospheric profile. These analyses
and forecaster input provided a diverse and physically sound
list of predictors (see Table A1 in the appendix) for the initial
development of the RF models discussed herein.

f. Machine learning methods

The Scikit-Learn module in Python (Pedregosa et al. 2011)
was used to train a RF classifier model (Breiman 2001) on the
dataset to predict the occurrences of “high,” “elevated,” and
“none” wind intensity labels as defined in Table 1. Separate
three-class RF classification models were trained using a
unique set of predictors for each site: Arlington, Bordeaux,
and Cheyenne. RF models are an ensemble of decision trees.
Each unique decision tree is trained to identify the best
thresholds at which to split predictor data in order to isolate
labeled classes. For example, the initial split node of a decision
tree will select a predictor, such as the 750-mb CAG–CPR
height gradient, to split the data into two separate branches. A
threshold for this predictor (such as a value greater than 60 m)
is determined, which best isolates the labeled classes into sepa-
rate subsets of the training data. The subset of the data that

FIG. 3. Heat map showing CSI scores for predicting high winds at Arlington (KARL) by only
considering CAG–CPR height gradients (m) at various thresholds (x axis) and pressure levels
(y axis). Darker blue colors indicate higher CSI scores.
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meets the defined threshold follows one branch to the next
split node, and the other subset follows the opposite decision
tree branch. This process repeats at each split node with new
predictors and thresholds until a leaf node is reached. A leaf
node is the final branch of the decision tree; and is reached
when either a class has been completely isolated, the maxi-
mum depth of the tree has been reached, or there are not
enough samples in the training data to make another split.
After training, new input data are run through each decision
tree within the RF classifier model to determine probabilities
for each classification. These probabilities are based on the
percentage of training samples assigned to each label at the
leaf node reached by the new input data. The probabilities are
averaged over all the trees in the forest. Deterministic predic-
tions in this study were based on the classification with the
highest probability.

The dataset was split into two groups: 1) training dataset
covering eight winters of data from 1 October 2010 to
31 March 2018, and 2) testing dataset covering two winters of
data from 1 October 2018 to 31 March 2020. The training

dataset was used for an eightfold cross-validation process for
hyperparameter tuning, where seven winters of data were
used for training and one winter was used for validation eight
different times. Hyperparameters are configuration settings
for the machine learning algorithm that can be set up to adjust
the model’s learning process, such as the number of trees or
maximum depth of the trees within a random forest. Multiple
settings were tested for each individual hyperparameter, using
default values for all other hyperparameters to evaluate their
influence on the forecast skill using CSI scores [see Eq. (3) in
section 2g]. From these results, a confined list of hyperpara-
meter values for each site was compiled for further tuning us-
ing a grid search method (Pedregosa et al. 2011). These
results can be seen in Table 2, with all tested values listed and
the selected hyperparameters for each RF model shown in
bold. Overall, the majority of hyperparameters tested from
the confined list showed little variation in forecast skill (not
shown). Increasing the class weights for high wind showed the
most impact by strongly penalizing the RFmodels for mistakes
related to the high wind classification. These hyperparameters

FIG. 4. Stacked histograms of SFC–650-mb lapse rate (8C km21) at (a) Arlington and SFC–700-mb lapse rate (8C km21)
at (b) Bordeaux and (c) Cheyenne from the NARR for high wind (red) and elevated (orange) observations.
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were used to train the RF model on the entire eight years of
data in the training dataset. The model was applied to the test-
ing dataset, containing only unseen data. All verification statis-
tics presented in section 3 are based on model performance
using the testing dataset.

g. RF model verification methods

Since the desired predictions from the RF models were
classification labels for wind intensity defined in Table 1, the
verification statistics used to evaluate the RF models are those
used for dichotomous forecasts: probability of detection
(POD), false alarm ratio (FAR), critical success index (CSI),
and frequency bias. The POD, FAR, CSI, and bias are de-
fined as follows:

POD5
hits

hits 1 misses
, (1)

FAR5
false alarms

hits 1 false alarms
, (2)

CSI5
hits

hits 1 misses 1 false alarms
, (3)

bias5
hits 1 false alarms

hits 1 misses
: (4)

These verification scores can be acquired from the contin-
gency table shown in Table 3. Elevated classifications were
combined with the “none” classifications in the contingency
table. These verification statistics were calculated using two
methods: 1) single-observation verification and 2) event-based
verification. For single-observation verification, the predicted
and observed classifications were compared at only single
time steps. For event-based verification, multiple times were
grouped together based on occurrence and timing of high
winds. High wind observations were identified within the

dataset, then a search was conducted forward and backward
in time until more than six consecutive hours of weak winds
with gusts below 45 mph and sustained winds below 35 mph
were identified. These times would then be grouped together
and considered part of an event, and were scored based on
the highest predicted classification over that time range.

Table 4 provides an example of how an event may be iden-
tified and evaluated using both methods. A high wind classifi-
cation was observed at 1500 UTC 16 November 2018, but the
RF model predicted an elevated classification. This would
count as a miss using single-observation verification. At the
next time step, 3 hours later, the RF model predicted a high
wind classification, but the observed classification was ele-
vated. This would be a false alarm using single-observation
verification. However, if these times were grouped together,
then this would be considered a hit as the RF model predicted
high wind classification within a short window of a similar ob-
servation. This method closely resembles how operational
forecasters would issue high wind warnings, and represents
the true operational utility.

3. Results and discussion

a. RF model bulk performance statistics

Table 5 shows 33 3 contingency tables using single-observation
verification for the RF models’ predictions over the testing
dataset for all three wind classifications. For each site, over
70% of the high wind false alarms issued by the RF models oc-
curred when elevated winds were observed, and therefore
would have been considered “close.” The majority of missed
high wind observations at Arlington were also considered to
be close, as over 70% occurred when the RF model prediction
was elevated. The opposite was true for the Bordeaux and
Cheyenne RF models, as the majority of missed high wind ob-
servations occurred with a RF model prediction of none. For
the remainder of this section, elevated and none classifications
were grouped together, similar to what was shown in Table 3.
This was done to evaluate the RF models’ performance at pre-
dicting whether or not high winds would occur.

Performance diagrams (Roebber 2009) were used for
model evaluation, as they display four measures of forecast
performance (POD, FAR, CSI, and frequency bias) on a sin-
gle diagram. Figures 5a and 5b show performance diagrams
with verification scores for the RF models (circles) compared to
the current operational tools (crosses) for single-observation
verification and event-based verification, respectively. Verifica-
tion scores for current operational tools (700-mb CAG–CPR

TABLE 3. Contingency table used for calculating POD, FAR,
CSI, and frequency bias verification statistics defined above.
“Elevated” and “none” classifications were grouped together
since the focus of this study is on prediction of high winds.

Observed
high wind

Observed elevated
or none

Forecast high wind Hit False alarm
Forecast elevated or none Miss Correct negative

TABLE 2. Number of predictors and list of hyperparameters tested using grid search method for each RF model. Hyperparameters
selected for the RF models trained at each site are set bold. Specific details about each hyperparameter can be found in online
documentation provided by Scikit-Learn.

Site
No. of

predictors
No. of
trees

Max tree
depth

Min samples at
leaf node

Max predictors per
split node

High wind
class weight

KARL 28 200 6 8 10 12 8 10 15 30 5 (“sqrt”) 8 12 2 3
KBRX 27 200 6 8 10 12 6 8 10 15 30 5 (“sqrt”) 8 12 2 3
KCYS 23 150 4 6 8 10 8 10 15 30 4 8 14 5 7
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height gradients for KARL and logistic regression models for
KBRX and KCYS) were based on optimal thresholds defined
earlier. The RF trained for Arlington showed the best perfor-
mance for both verification methods, with CSI scores of 0.666
and 0.384 for the event-based and single-observation methods,
respectively. The model for Bordeaux only trailed behind slightly,
with an event-based CSI of 0.609 and a single-observation CSI of
0.369. At Cheyenne, the RFmodel performed much more poorly,
with 0.313 event-based and 0.195 single-observation CSI scores,
respectively.

Compared to current operational forecast tools, these RF
models at Arlington and Bordeaux were more skillful, with
higher CSI scores for both single-observation and event-based
verification. These results for single-observation verification
were statistically significant with 95% confidence, using 1000
random bootstrapped samples with replacement over the test-
ing dataset, while differences for the Cheyenne models were
not statistically significant. Additionally, the frequency bias
was minimized with the RF models at each site, compared to
the overforecasting (KARL) and underforecasting (KBRX
and KCYS) current operational tools.

The weaker performance of the RF model at Cheyenne
could be attributed to multiple factors. The frequency of high
wind occurrences in the training and testing datasets is much

greater at Arlington and Bordeaux (9.97% and 6.86%, respec-
tively) compared to Cheyenne (1.01%). This results in fewer
high wind occurrences in the training dataset for the Chey-
enne RF model to learn from, and thus yields a lower chance
that a similar event exists within the testing dataset. Addition-
ally, the predictor variables selected for the Cheyenne RF
model do not display individual CSI scores as high in the
background analysis, compared to those selected for Arling-
ton and Bordeaux. Cheyenne is also primarily impacted by
downslope windstorms, which can be more difficult to predict
due to a greater number of possible influencing parameters.
The gap areas of Arlington and Bordeaux are generally more
predictable, as these sites are primarily influenced by pressure
gradients and flow aloft.

Reliability diagrams (Bröcker and Smith 2007) were used
to assess the uncertainty calibration of the RF models by
looking at how often a forecast high wind probability actually
occurred. Figures 6a–c show reliability diagrams for high wind
probability of the RF models trained at Arlington, Bordeaux,
and Cheyenne, respectively. The most frequent forecast for
the Arlington model was between 0% and 10%, consisting of
1990 out of 2881 forecast times in the testing dataset, as seen
in Fig. 6a. However, the Arlington RF model still produced a
considerable number of high wind forecast probabilities in the
higher probability bin ranges. The Arlington RF model’s high
wind probabilities have a slight overforecasting bias, but over-
all performed fairly well through all bin ranges.

Similar to the Arlington model, the Bordeaux RF model in
Fig. 6b shows a slight overforecasting bias of high wind proba-
bilities, but still follows the 1:1 line fairly well throughout the
high wind forecast probability bin ranges. The reliability dia-
gram for the Cheyenne RF model suggests the presence of a
severe overforecasting issue, as high winds were only ob-
served 40% of the time when RF high wind probabilities were
between 60% and 100%. This could also be an artifact of the
lack of high wind probability forecasts above 30%. A high
wind forecast probability between 0% and 10% was produced
2802 out of 2911 forecast times in the testing dataset, while
only 27 forecast times yielded a probability greater than 30%.

Overall, these verification scores provide encouraging insight
into the RF model’s performance at Arlington and Bordeaux.
Despite these encouraging results from a bulk statistics perspec-
tive, case studies are needed to truly evaluate the usefulness of
each RF model to operational forecasters in select situations.
Section 3c will investigate three case studies of events with vary-
ing intensities and durations to evaluate the RF model

TABLE 4. Example high wind event from dataset showing verification for single-observation and event-based methods.

Event
ID Date and time

Observed
class

Predicted
class

Single-observation
verification

Event-based
verification

0 0600 UTC 16 Nov 2018 None None Correct negative Correct negative
1 0900 UTC 16 Nov 2018 None None Correct negative Hit
1 1200 UTC 16 Nov 2018 Elevated None Correct negative Hit
1 1500 UTC 16 Nov 2018 High wind Elevated Miss Hit
1 1800 UTC 16 Nov 2018 Elevated High wind False alarm Hit
1 2100 UTC 16 Nov 2018 None None Correct negative Hit
0 0000 UTC 17 Nov 2018 None None Correct negative Correct negative

TABLE 5. Contingency table showing predictions and
observations of all three wind classifications over the testing dataset
(two winters) for the RF models at Arlington, Bordeaux, and
Cheyenne.

Observation

High wind Elevated None

KARL
High wind 145 84 22
Elevated 93 257 99
None 36 243 1902

KBRX
High wind 111 75 29

Forecast Elevated 31 65 26
None 55 220 2277

KCYS
High wind 7 12 3
Elevated 4 10 8
None 9 101 2757
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performance for each site. Although the skill scores for the ini-
tial Cheyenne RF model were less desirable, these case studies
will still help evaluate which synoptic patterns the model could
be most useful in predicting high winds.

b. RF model feature importance

Feature importances were computed using a single-pass
permutation importance method (Pedregosa et al. 2011;
McGovern et al. 2019) in order to analyze which predictors
provide the most value to each RF model. Permutation im-
portance was configured to calculate the loss in CSI score, as
a predictor’s data values are rearranged using the single-
observation verification method on the deterministic RF
model prediction. Rearranging a vital predictor’s data values
will result in a higher reduction in CSI scores, unless another
highly correlated predictor is present. The box-and-whiskers
plots in Fig. 7 shows the distribution of CSI score loss as the
rearrangement of predictor data occurs over 100 repetitions
for each predictor. Figures 7a–c reveal the most significant
predictors for the RF models at Arlington, Bordeaux, and
Cheyenne, respectively.

The top five predictors for the Arlington RF model include
the 700–500-mb lapse rate (8C km21), 700-mb wind direction
(8), 700-mb omega (2mb s21), and the CAG–CPR height gra-
dient (m) at both 700- and 750-mb. Previous local research
correlated wind gusts to the same CAG–CPR height gradients
at the 700- and 850-mb level. These predictors have been used
successfully among local forecasters, and inclusion of these
predictors as top influencers for the RF model at Arlington
makes meteorological sense. The 700–500-mb lapse rates by
far show the highest importance, most likely because this level
aids in the identification of mountain top inversion layers that

are critical for mountain waves or forcing winds through a gap
channel. Lower levels would typically be more important
for identifying mountain-top inversions; however, Arling-
ton is located at an elevation of 2369 m (7772 ft), with an
average surface pressure of roughly 760 mb. Additionally,
Arlington high wind events are typically associated with
winds out of the southwest to west, supporting the impor-
tance of 700-mb wind direction for the RF model. Enhanced
gap flow and mountain wave activity are more likely based
on local topography near Arlington with these typical wind
directions, assuming other favorable meteorological param-
eters are present.

The top five predictors for the Bordeaux RF model include
the Rawlins (RWL)–Douglas, Wyoming (DGW), MSLP gra-
dient (mb), 750-mb omega (2mb s21), 650–850-mb vertical
potential temperature difference (K), CAG–DGW MSLP gra-
dient (mb), and the SFC-700-mb lapse rate (8C km21). While
the RWL–DGW MSLP gradient is not positioned directly
overhead of the wind gap upstream of Bordeaux, the orienta-
tion crossing the Laramie Range resembles the orientation of
the gap path. These top predictors are all different from those
selected in previous local research when developing a logistic
regression model for Bordeaux. The ARL–BRX MSLP gradi-
ent, 850-mb CAG–CPR height gradient, and the 800-mb wind
speed were used to develop the current operational model
used locally. These predictors’ (or most similar) importances
rank 8th, 17th, and 25th out of 27 predictors. Using a 95% con-
fidence interval of mean CSI score reduction from 1000 boot-
strapped samples with replacement, the notion that the ARL–
BRXMSLP gradient, 850-mb CAG–CPR height gradient, and
the 800-mb wind speed are outside the top five RF model pre-
dictors is statistically significant. This continues to show
support for the development of the RF model, as predictors

FIG. 5. Performance diagram for (a) single-observation verification and (b) event-based verification methods for
the random forest models (circles) and currently used operational guidance (crosses) at three locations: Arlington
(magenta), Bordeaux (orange), and Cheyenne (red). Success ratio (1 2 FAR) is shown on the x axis, and POD
is shown on the y axis, with black dashed lines representing frequency bias. Blue shading shows the CSI, which is
maximized in the upper-right-hand corner of the diagrams. Error bars around points on (a) represent 95% confidence
interval of POD and success ratio scores using 1000 random bootstrapped samples with replacement over the
testing dataset.
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previously omitted from the logistic regression model show
value in predicting high winds for Bordeaux.

The top five predictors for the Cheyenne model include the
650-mb omega (2mb s21), MSLP (mb), GJT–CYS MSLP gradi-
ent, 800-mb GJT–CYS height gradient (m), and the hour (time
of day). While the distribution of CSI score reductions varies
greatly for the hour predictor, the climatology of high wind oc-
currences strongly suggests that time of day is an important factor
(Fig. 2). Typically, strong mixing around midday assists down-
ward momentum transport to the surface. The SFC–700-mb
lapse rate comes in as the sixthmost important predictor. Rare
nighttime occurrences of high winds at Cheyenne have been as-
sociated with mountain waves or strong frontal passages.

Three types of predictors included within the RF models
are considered circular variables. These predictors include
wind direction (degrees ranging from 18 to 3608), month
(standard numerical value ranging from 1 to 12), and hour
(numerical value in UTC ranging from 0 to 23). Typical
predictor wind directions during high wind events for these
sites range between southwest (;2258) and northwest
(;3158). Therefore, the discontinuity in this circular predic-
tor between 3598 and 18 is rarely a factor. Future work will
explore breaking down wind speed and direction into zonal
and meridional components of the wind before training the
RF models. The month and hour predictors were included
in the RF models to try to find the best possible analogs

FIG. 6. Reliability diagram for random forest models at (a) Arlington, (b) Bordeaux, and (c) Cheyenne. The line
plot (blue) shows the observed percent frequency of high winds for defined forecast probability bin ranges. Error bars
(blue) around the line plots in (a) and (b) represent the 95% confidence interval using 1000 random bootstrapped
samples with replacement over the testing dataset. Black dashes indicate the 1:1 line, where values above (below) this
line indicate RF model high wind probabilities were underforecast (overforecast). The bar plot (red) shows the RF
forecast high wind probability frequency based on defined probability bin ranges. Forecast probability bin ranges are
represented by the width of the bar plots. Note the error bars were not included on (c) as a result of too few forecast
probabilities in the higher probability bin ranges.
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beyond the meteorological predictor data. However, using
the standard numerical value for months results in the point
of discontinuity occurring right at the peak of high wind
season (December and January), which could be a difficult
pattern for the RF models to learn in the training process.
Future work will look into rearranging the standard numer-
ical value for months to begin outside of the climatological

high wind season. Despite known discontinuities in these
predictors, case studies beyond those presented in section 3c
suggest these predictors are still valuable to the RF models.
Higher high wind probabilities have been noted in numerous
cases at Cheyenne around 1800 UTC, which is climatologically
the most frequent time of occurrence of high winds at this
location (Fig. 2).

FIG. 7. Box-and-whisker plots for distribution of CSI score reductions when calculating permu-
tation importances over 100 iterations at (a) Arlington, (b) Bordeaux, and (c) Cheyenne. Predic-
tors are ordered along the y axis with the most important at the top of the plot. Boxes show the
interquartile range between the 25th and 75th percentile, with whiskers representing the 5th and
95th percentiles. The orange line inside the boxes represents the median values.
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c. High wind event case studies

1) CASE 1: 1 JANUARY 2020

A widespread bora-type high wind event with localized
extreme gap flows impacted a large portion of southeast
Wyoming from 31 December 2019 to 1 January 2020. A signif-
icant mid- and upper-level jet was advancing across the north-
east Pacific, with 90-kt winds observed at 500 mb over
Quillayute, Washington (KUIL), at 0000 UTC 1 January
2020. Figure 8 shows a four-panel plot of NARR data from
1200 UTC 1 January 2020. The general pattern remained
quasi-zonal through 1200 UTC, with strong northwesterly
flow extending from the Pacific Northwest through the central
and northern High Plains regions. Rapid surface cyclogenesis
was occurring over southern Saskatchewan and Alberta, with
pressures falling into the 990–995-mb range from eastern
Montana and northeast Wyoming into the western Dakotas.
A 1020-mb surface high was analyzed along the Colorado–
Utah border, yielding a very strong (10–15 mb) GJT–CYS
MSLP gradient by 1800 UTC. Maximum wind speeds in the
surface–650-mb layer ranged from 50 to 60 kt across southeast
Wyoming. Strong cold-air advection aloft, coupled with ex-
treme subsidence (downward omega exceeding 215 2mb s21)
in the right-exit region of the upper-level jet streak supported
downward momentum transfer of stronger winds from aloft.

This was a classic pattern for strong winds in southeast
Wyoming, which were forecast quite well by local meteorolo-
gists. A high wind watch was posted for the gap regions on
the afternoon of 30 December 2019, roughly 24–36 h ahead of
the expected onset of strong winds. These watches would
eventually be upgraded to high wind warnings, with the city
of Cheyenne added to the warning early in the morning on
1 January 2020.

Figure 9a shows the timeline of wind observations at
Arlington compared to the RF model prediction and CAG–

CPR height gradients. Height gradient thresholds for Arling-
ton performed quite well for this event, with the 700-mb
CAG–CPR gradient climbing to between 50 and 55 m around
the time of the first observed 581 mph wind gust. The stron-
gest winds generally coincided with peak gradients in the low
70s (mph) between 0600 and 1200 UTC 1 January. The gradi-
ent remained elevated and even increased further to near
80 m at 1800 UTC, but observed wind gusts decreased below
warning criteria during this time. The Arlington RF model
predicted winds in the elevated category as early as 1500 UTC
31 December and successfully began predicting high winds at
2100 UTC, earlier than current guidance suggested. The peak
wind gusts for this event coincided with the highest probabili-
ties of high winds at Arlington. The RF model continued to
predict high winds until 1800 UTC 1 January, which verified

FIG. 8. NARR data from 1200 UTC 1 Jan 2020 at the (a) 250-mb level, (b) 500-mb level, (c) 700-mb level, and
(d) surface. Black contours in (a)–(c) show geopotential height (m), while color fill shows wind speed (kt). Red dashed
contours in (b) and (c) show omega at intervals of 25, 210, 215, and 230 2mb s21. Black contours in (d) show
MSLP (mb), while color fill shows surface temperature (8C).
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as 1-h average sustained winds remained around 40 mph until
1800 UTC despite gusts dropping below 58 mph. This was an
extremely successful forecast, given the high accuracy of both
the start and end times of the event along with the timing of
the highest probabilities. The RF model appears to be an im-
provement on current tools, considering that the correlation
study was based entirely on wind gusts and not sustained
winds in any capacity.

Figure 9 also shows the timeline of wind observations at
(Fig. 9b) Bordeaux and (Fig. 9c) Cheyenne compared to the
RF model output (deterministic prediction and high wind
probabilities) and logistic regression model probabilities. The
classifications for the logistic regression models are based on
the optimal probabilities of 12% and 26% for Cheyenne and
Bordeaux, respectively. Since the logistic regression models
were trained using only a binary classification, only none and
high wind classifications are indicated. The peak probability
from the Cheyenne logistic regression model approached
11% when the highest wind gusts were observed, but still fell

short of the optimal value required to predict high winds.
The model did not show any notable increase until at least
3 h after the first wind gusts to 581 mph. The Cheyenne RF
model correctly predicted a sharp increase in probabilities be-
tween 0900 and 1500 UTC 1 January, with warning-criteria
winds first observed around 1200 UTC. A high wind classifica-
tion was predicted between 1500 and 2100 UTC, about 3 h
delayed from the actual onset of warning-criteria winds. How-
ever, RF classification probabilities at 1200 UTC were similar
with a 36% (not shown) and a 28% probability of elevated
and high wind classifications, respectively. This means that
the RF model was strongly suggesting potential for high
winds, even though RF model probabilities favored the lower
classification. It seems prudent that forecasters are provided
with as much probabilistic information as possible to under-
stand how the model is arriving at its final decision. The maxi-
mum RF high wind probability was 56%, and coincided well
with the peak sustained winds of 45 mph and gusts to 67 mph
at Cheyenne around 1800 UTC. The proposed RF model for

FIG. 9. Maximum wind gust (mph) and maximum 1-h sustained winds (mph) observed at (a) Arlington, (b) Bordeaux, and (c) Chey-
enne compared to RF model predicted classification and high wind probability over 3-h periods from 0000 UTC 31 Dec 2019 until
1200 UTC 2 Jan 2020. Current operational tools displayed include 700-mb CAG–CPR height gradient (m) in (a) and logistic regression
model probabilities in (b) and (c). Values are color coded based on the wind classification they would be associated with as follows: high
wind (red), elevated (orange), and none (green).
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Cheyenne was a significant improvement in this particular
case, successfully predicting high winds and for a longer dura-
tion than the logistic regression guidance implied.

The Bordeaux logistic regression model did not show proba-
bilities exceeding optimal thresholds until 0600 UTC 1 January,
significantly later than the initial onset of 581 mph gusts
around 1500 UTC 31 December. This extreme event featured
peak wind gusts up to 81 mph between 1200 and 1500 UTC
1 January, occurring 3–6 h earlier than the logistic regression
model predicted the maximum probability of 88%. The pro-
posed RF model for Bordeaux also struggled to capture the
early onset of high wind observations, with the none classifica-
tion favored as 1-h sustained winds climbed above warning
criteria at 0900 UTC 31 December. The RF model began pre-
dicting high winds at 1500 UTC. This was 6 h after the initial
onset of warning-criteria winds, but was still 12–15 h earlier
than was implied by the logistic regression guidance. The Bor-
deaux RF model continued to accurately predict high winds
through the remainder of the event ending at 2100 UTC
1 January. The strongest winds coincided well with the peak
high wind probability (95%) from the RF model.

All three RF models performed exceptionally well relative
to the observations, with all high wind predictions occurring
within 3–6 h of the actual onset of warning-criteria winds. The
existing logistic regression and correlation guidance for each
site did key in to the potential for strong winds, but was gen-
erally too late with the overall timing. This appears to be
one of the greatest values of the new guidance, as timing

information is critical to transportation management partners
to display on dynamic message boards on area highways. One
major shortcoming is the models’ inability to predict actual
wind speeds. A RF regressor could prove useful to gain in-
sight into the actual intensity of a given event, especially for
long duration events or when gusts exceed 75 mph. A prelimi-
nary analysis into a simple RF regressor for this case pre-
dicted peak wind gusts reasonably well (within 5 mph) and
almost perfectly pinned down the timing of the 801 mph
gusts at Bordeaux. These experimental results strongly sug-
gest that future analysis and development of RF regressor
models will be necessary to complement the RF classifier
models.

2) CASE 2: 2–5 MARCH 2020

During the 72-h period between 1200 UTC 2 March 2020
and 1200 UTC 5 March 2020, three shortwave troughs passed
through northeast Wyoming and eastern Montana, while
much of the area remained under northwest flow. Figure 10
shows a four-panel plot of NARR data from 2100 UTC
2 March 2020, with the approach of the first of three short-
waves. CAG-CPR height gradients at 850 and 700 mb in-
creased to 80 m by 2100 UTC 2 March and remained above
60 m through 1800 UTC 3 March. These gradients spiked up
above 60 m again during the day on 4 March.

The Arlington and Bordeaux RF models predicted this
long-duration event extremely well. Figure 11 shows RF prob-
abilities compared to observed wind gusts and high wind

FIG. 10. As in Fig. 8, but for 2100 UTC 2 Mar 2020.
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warning valid times. The arrows on Fig. 11a show the start
and end time of the high wind warning. Black scatter points
are annotated for each valid time event code (VTEC) action
on the high wind warnings including new events (NEW),
event continued (CON), event extended in time (EXT), and
event cancelled (CAN). A CON would indicate that the fore-
caster believes the duration and areal coverage of the warning
accurately represents the hazard, and no changes are neces-
sary at the time of the forecast update. An EXT means the
forecaster believes the threat may extend beyond the time

frame covered by the warning, and therefore adjusts the start
or end time of the warning.

At Arlington, high winds were correctly predicted between
1500 UTC 2 March and 1800 UTC 3 March for all but one
time step, as wind gusts varied between 55 and 75 mph. The
initial high wind warning issued at 0900 UTC 2 March for Ar-
lington went into effect at 1800 UTC 2 March. Shortly there-
after, this warning needed to be started earlier, as wind gusts
approaching 60 mph were being observed by 1500 UTC
2 March. Additionally, the initial expiration time of 1200 UTC

FIG. 11. Time series of (a) high wind warning timing and RF model probability for high wind (red), elevated
(orange), and none (green) classifications at (b) Arlington and (c) Bordeaux between 0000 UTC 2 Mar 2020 and
1200 UTC 5 Mar 2020. Logistic regression model probabilities (black) are provided for Bordeaux (WRKBRX) in (c).
Scatter points located on high wind probability line (red) are color coded to indicate the RF model predicted classifi-
cation. Smaller, more numerous, scatter points represent observed wind gusts color coded to indicate observed wind
classification (wind gust$ 58 mph and/or 1-h sustained wind$ 40 mph). For example, an observed 50-mph wind gust
may be color coded red if observed sustained winds (not shown) at the time meet high wind criteria. Black dots and
orange arrows shown in (a) indicate issuance time and duration of high wind warning issued by NWS Cheyenne,
respectively, along with VTEC action including new events (NEW), event continued (CON), event extended in time
(EXT), and event cancelled (CAN).
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3 March needed to be extended multiple times, with high
winds continuing to be observed like RF model probabilities
suggested. After the second time the warning needed to be ex-
tended beyond the initial expiration, forecasters extended the
warning through 0600 UTC 5 March. A 9-h decrease in winds
(still gusting around 35–45 mph) was accurately depicted by
the RF model before increasing again through 0600 UTC
5 March.

At Bordeaux, the RF model accurately depicted the select
times where high winds occurred during the 3-day stretch.
The RF model correctly predicted high winds between 1500
and 2100 UTC each day from 2 to 4 March, while also accu-
rately predicting a lull in winds during the overnight hours.
Just like for Arlington, the high wind warning needed to be
started earlier compared to the timing from the initial issu-
ance, as wind gusts approached 60 mph by 1500 UTC 2 March.
Additionally, multiple extensions to the high wind warning
ending time were needed by forecasters to fully capture this
event. This uncertainty of timing of the high wind warning by
forecasters could be attributed to the poor performance of the
previously developed logistic regression model for Bordeaux
(black line in Fig. 11c), which only briefly reached the optimal
threshold of 26% during this event.

The Cheyenne RF model predicted only one time step as
high wind, which ended up being a false alarm (not shown) as
high winds were not observed at Cheyenne for this event.
However, a forecaster could see this lone high wind predic-
tion as a potential outlier or low confidence prediction as all

surrounding predictions were for the none classification along
with very low high wind probabilities. The logistic regression
model for Cheyenne only peaked around 2% at this time,
which did not suggest high winds. Possible reasoning for this
one high wind prediction by the RF model is the simultaneous
peak in height and pressure gradient predictors at this time.
These predictors were in the higher percentiles of their re-
spective distributions from the training dataset, while predic-
tors such as wind speeds and omega were much more modest.

With the RF guidance available, forecasters could have pro-
vided earlier lead time and better time duration for high wind
warnings at the time of initial issuance (under the assumption
that NARR data were fairly similar to GFS prediction). Mul-
tiple EXT actions suggest the timing of the high wind threat
was not accurately represented by current operational tools
and traditional forecast analysis. High wind probabilities for
the RF models at Arlington and Bordeaux remained high be-
yond the initial expiration time, 1200 UTC 3 March. Despite
wind gusts not constantly meeting high wind criteria after
1800 UTC 3 March for Arlington or Bordeaux, the RF mod-
el’s prediction would have indicated that the potential for
high winds would continue for a longer duration.

3) CASE 3: 28–29 MARCH 2021 (REAL-TIME GFS DATA)

This final case study was the first examined using GFS data
as input into the RF models, similar to how forecasters would
analyze the data in real-time operations. Southeast Wyoming
was in the right-exit region of an approaching 300-mb jet

FIG. 12. As in Fig. 8, but for 1200 UTC 29 Mar 2020.
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streak, with 50 kt of 700-mb flow during the morning of
28 March as height and MSLP gradients tightened. These con-
ditions remained favorable until the passage of a surface cold
front late in the afternoon of 29 March. Figure 12 shows a
four-panel plot of NARR data from 1200 UTC 29 March

2021 as the system approached southeast Wyoming. Near
Cheyenne, low- and midlevel lapse rates steepened signifi-
cantly around 1800 UTC 29 March immediately ahead of the
cold front, which provided a short window of opportunity for
high winds.

FIG. 13. As in Fig. 11, but at (a) Arlington, (b) Bordeaux, and (c) Cheyenne starting at 1200 UTC 27 Mar 2021 in
(a) and (b) and 1200 UTC 28 Mar 2021 in (c) without arrows to represent high wind warning valid times. Logistic
regression model probabilities (black) are provided for Bordeaux (WRKBRX) and Cheyenne (WRKCYS) in (b) and
(c), respectively.
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Figures 13a and 13b show a time series of probabilities for
each classification from the 1200 UTC GFS run on 27 March
2021. This was the latest data available at the time of high
wind warning issuance (2100 UTC 27 March) for Arlington
and Bordeaux, while a high wind watch was issued at this
same time for Cheyenne. Overall, the models performed rea-
sonably well for Arlington and Bordeaux as they highlighted
an extended period of elevated to high winds. The predicted
timing of high winds was impressive at Arlington, with the
model suggesting 0900 UTC 28 March–1500 UTC 29 March.
The high wind event began just before, and ended just after
this period. The prediction of high winds at Arlington was
fairly consistent with multiple GFS model cycles beginning as
far as five days prior to the event (not shown). The Bordeaux
RF model more accurately predicted the onset of high winds
compared to the logistic regression model (black line in Fig. 13b),
which was 9 h too early. Despite the RF model at Cheyenne pre-
dicting a none classification when high winds were observed, it
was encouraging to see a peak in high wind probability at the
time of high winds (1800 UTC 29 March). Optimal probabilities

could be determined for high wind prediction, as discussed for
previous guidance in section 1a.

One point to remember is that these RF models are
trained on the maximum wind gusts and maximum 1-h sus-
tained winds over a 3-h period centered on these forecast
times. Therefore, temporary decreases in observed wind
speed without model acknowledgment can be expected at
times. This can be seen in Fig. 13a for Arlington around
0600 UTC 29 March, where maximum wind gusts exceeded
60 mph within the 3-h period centered on 0600 UTC, but
also wind gusts as low as 35 mph were observed in this
period.

One caveat with this system is that the training dataset used
the NARR, which is a reanalysis system and not an opera-
tional forecast model. For real-time implementation, GFS
forecast data were used. While this might not be the best prac-
tice for machine learning due to difference between the GFS
and NARR, real-time evaluation of GFS forecast data com-
pared to the distribution of NARR data from the training
dataset is provided to forecasters.

FIG. 14. Time series of GFS (a) 750-mb CAG–CPR height gradients (m) and (b) 700-mb omega (2mb s21) at
Arlington between 1200 UTC 27 Mar 2021 and 0600 UTC 3 Apr 2021. Scatter points located on black lines are color
coded to indicate the RF model predicted classification. Violin plots with imbedded boxplots highlight the predictor’s
distribution from the NARR dataset for each wind classification. Boxes show the interquartile range between the
25th and 75th percentile with whiskers representing the 5th and 95th percentiles.
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Figure 14a shows a time series of GFS forecast data for
750-mb CAG–CPR height gradient, with violin plots repre-
senting the distribution of this predictor in the NARR dataset
for each of the three classifications. This provides the fore-
caster with an additional tool to assess the value for each pre-
dictor. Forecast data for all lead times in Fig. 14a remain
within the distribution of NARR data, which was observed
for almost every predictor in this case. The one exception was
the 700-mb omega values at Arlington, which can be seen in
Fig. 14b. GFS forecast data during the high wind event reaches
225 2mb s21, while the distribution of 700-mb omega for any
classification does not appear to drop below 213 2mb s21. Ar-
lington is situated at the base of the northern slopes of the Snowy
Range, where the elevation gradient might be better resolved in
the 13-km GFS grid spacing compared to the 32-km NARR grid

spacing. Therefore, terrain effects on the omega fields might not
be captured well by this reanalysis system. Regardless, no evi-
dence has been found that this large difference between
NARR and GFS 700-mb omega values at Arlington influen-
ces the RF model’s predictions. Additional analysis on differ-
ences between NARR and GFS data for these sites could be
conducted in the future and potentially factored back into
the training process for the RF models.

4. Conclusions

Random forest (RF) models were developed to predict
high winds (wind gusts $ 58 mph and/or 1-h sustained winds
$ 40 mph) for three locations across southeast Wyoming. In
addition to Cheyenne, locations selected included two areas

TABLE A1. List of predictors used for RF models at Arlington, Bordeaux, and Cheyenne.

Arlington Bordeaux Cheyenne

Height gradients 750-mb CAG–ARL height
gradient (m)

800-mb ARL–BRX height
gradient (m)

725-mb CAG–BRX height
gradient (m)

750-mb CAG–BRX height
gradient (m)

800-mb CAG–BRX height
gradient (m)

700-mb CAG–CPR height
gradient (m)

750-mb CAG–CPR height
gradient (m)

800-mb CAG–CPR height
gradient (m)

800-mb GJT–CYS height
gradient (m)

700-mb CAG–CPR height
gradient (m)

800-mb CAG–DGW height
gradient (m)

775-mb RWL–DGW height
gradient (m)

750-mb CAG–DGW height
gradient (m)

800-mb RWL–DGW height
gradient (m)

725-mb SBS–DGW height
gradient (m)

750-mb GJT–CYS height
gradient (m)

800-mb SBS–DGW height
gradient (m)

750-mb SBS–DGW height
gradient (m)

Pressure gradients CAG–ARL MSLP gradient (mb) ARL–BRX MSLP gradient (mb) CAG–DGW MSLP gradient (mb)
CAG–BRX MSLP gradient (mb) CAG–BRX MSLP gradient (mb) GJT–CYS MSLP gradient (mb)
CAG–CPR MSLP gradient (mb) CAG–CPR MSLP gradient (mb)
CAG–DGW MSLP gradient (mb) CAG–DGW MSLP gradient (mb)
GJT–CYS MSLP gradient (mb) RWL–DGW MSLP gradient (mb)
SBS–DGW MSLP gradient (mb) SBS–DGW MSLP gradient (mb)

Wind speed and
direction

700-mb wind speed (kt) 750-mb wind speed (kt) 750-mb wind speed (kt)
700-mb wind direction (8) 750-mb wind direction (8) 750-mb wind direction (8)
650-mb wind speed (kt) 700-mb wind speed (kt) 700-mb wind speed (kt)
650-mb wind direction (8) 700-mb wind direction (8) 700-mb wind direction (8)
1000–650-mb max wind speed (kt) 1000–700-mb max wind speed (kt) 1000–650-mb max wind speed (kt)

Omega 700-mb omega (2mb s21) 750-mb omega (2mb s21) 650-mb omega (2mb s21)
700–500-mb mean omega (2mb s21) 700-mb omega (2mb s21) 725-mb omega (2mb s21)

850–700-mb mean omega (2mb s21) 700–500-mb mean omega (2mb s21)

Lapse rates and
vertical profiles

700–500-mb lapse rate (8C km21) 700–500-mb lapse rate (8C km21) 700–500-mb lapse rate (8C km21)
SFC–700-mb lapse rate (8C km21) SFC–700-mb lapse rate (8C km21) 850–700-mb lapse rate (8C km21)
650–850-mb potential temperature

difference (K)
650–850-mb potential temperature

difference (K)
SFC–700-mb lapse rate (8C km21)
650–850-mb potential temperature

difference (K)

General 500-mb temperature (8C) 700-mb temperature (8C) 700-mb temperature (8C)
700-mb temperature (8C) MSLP (mb) MSLP (mb)
MSLP (mb) Month Month
Month Hour Hour
Hour
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where strong crosswinds frequently result in truck blow overs
along Interstate 25 (Bordeaux) and Interstate 80 (Arlington)
during the winter months. Model variables from the North
American Regional Reanalysis (NARR) were selected based
on correlations to high winds and critical success index (CSI)
scores using univariate thresholds.

The RF models were evaluated against current operational
tools using two methods: 1) single-observation verification and
2) event-based verification. Single-observation verification only
compares the prediction and observation at a single time, while
event-based verification groups together multiple times based
on occurrence and duration of high wind events. The RF mod-
els trained for Arlington and Bordeaux performed the best,
with CSI scores for event-based verification greater than 0.6
over the testing dataset, which covers two winters. The RF
model for Cheyenne had a CSI score of 0.313 for event-based
verification, as both the POD and FAR hovered around 0.5.
These three RF models all showed improved skill at predicting
high wind events over current operational tools. While the
Cheyenne RF model did not perform as well, there are a few
possible explanations, including 1) less frequent occurrence of
high winds and 2) predictors not being as strongly correlated
with high winds. Regardless, the output still presents high wind
probabilities for operational meteorologists to leverage in the
forecast process and was a significant improvement over current
operational tools. The only exception was the Cheyenne RF
model for single-observation verification. Future improvements
will be explored, including identifying more skillful predictors
and different methods for RF model configuration.

Three case studies presented further explored the useful-
ness of newly developed RF models to predict occurrences of
high winds and displayed their improved forecast skill over
current operational tools. The final case analyzed the output
when GFS forecast data were used as inputs into the RF mod-
els. While these RF classification models predict defined
ranges of wind speed and gust including the local high wind
criteria, additional information about wind gust magnitude
could be useful to forecasters and core partners. Future work
will explore RF regressor models to aid forecasters in not
only predicting the occurrence of high winds, but also predict-
ing the strength and most likely timing of the strongest winds.

These results have provided motivation for expansion of RF
models to additional sites across southeast Wyoming where
high winds and truck blow overs are frequent during the winter
months. The authors hope this work could also be a useful blue-
print for improving high wind prediction at additional locations
in complex mountainous terrain around the world.
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APPENDIX

List of RF Model Predictors

Table A1 presents a full list of predictors used for RF
models at Arlington, Bordeaux, and Cheyenne.
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